
MATH2060A Assignment 1

Deadline: Jan 18, 2019.

Hand in: Supplementary exercise no (1), (2bc), and (5).

Section 6.1 no 4, 7, 8cd, 9, 13, and 14.

Supplementary Exercises

1. Consider the function f defined on [0,∞)

f(x) = xα sin
1

x
, α > 0 ,

and f(0) = 0. Determine the range of α in which

(a) f is continuous on [0,∞),

(b) f is differentiable on [0,∞), and

(c) f ′ exists and is differentiable on [0,∞).

2. Find (a) the maximal domain on which the function is well-defined, (b) the domain on
which it is continuous and (c) the domain on which it is differentiable in each of the
following cases. Justify your answer in (c).

(a) f(x) = |x2 − 5x+ 6| .
(b) h(x) = log(16− x2) .
(c) j(x) = cos |x| .

3. Find a function which is not differentiable exactly at the following points on (−∞,∞) in
each of the following cases:

(a) n-many distinct points {a1, a2, · · · , an},
(b) The set of integers Z, and

(c)

{
0, 1,

1

2
, · · · , 1

n
, · · · ,

}
.

4. A function f : (a, b)→ R has a symmetric derivative at c ∈ (a, b) if

f
′
s(c) = lim

h→0

f(c+ h)− f(c− h)

2h

exists. Show that f
′
s(c) = f

′
(c) if the latter exists. But f

′
s(c) may exist even though f is

not differentiable at c. Can you give an example?

5. Let f : R→ R satisfy f(x+ y) = f(x)f(y) for all x, y ∈ R. Suppose f is differentiable at
0 with f

′
(0) = 1. Show that f is differentiable on R and f

′
(x) = f(x) for all x ∈ R.
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Continuity and Differentiability

Proposition. Let f be defined on (a, b) and x0 ∈ (a, b). If f is differentiable at x0, it is also
continuous at x0. Proof: As f is differentiable at x0, for ε = 1, there is some δ1 such that∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < 1, x ∈ (x0 − δ1, x0 + δ1) \ {x0} .

It follows that
|f(x)− f(x0)− f ′(x0)(x− x0)| ≤ |x− x0| ,

for all x ∈ (x0 − δ1, x0 + δ1). Therefore,

|f(x)− f(x0)| ≤ |f(x)− f(x0)− f ′(x0)(x− x0)|+ |f ′(x0)(x− x0)|
≤ (1 + |f ′(x0)|)|x− x0| , ∀x ∈ (x0 − δ1, x0 + δ1) .

Now, given ε > 0, we can find some δ ≤ δ1 such that

δ <
ε

1 + |f ′(x0)|
.

Then,
|f(x)− f(x0)| ≤ ε, ∀x ∈ (x0 − δ, x0 + δ) ,

done.

In our text book, there is a short proof based on the Limit Theorem. Here we show how to use
the ε− δ argument to the same effect.

There are plenty examples showing continuity does not imply differentiability. Some typical
examples were discussed in class, including the following three:

• The function f(x) = |x| is not differentiable at x0 = 0. (Reason: The left derivative and
right derivative at 0, although exist, do not match.)

• The function g(x) = |x|1/2 is not differentiable at x0 = 0. (Reason: The difference
quotient tends to infinity as x goes to 0.)

• The function h(x) = x sin 1/x (and set h(0) = 0) is not differentiable at x0 = 0. (Reason:
The difference quotient does not converge due to rapid oscillation.)
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Elementary Functions

Here we summarize the formulas of derivatives of elementary functions and outline how they are
proved.

(1) Polynomials

p′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1,

where
p(x) = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n , ∀x ∈ R.

(2) Rational functions

(
p(x)

q(x)

)′
=
p′(x)q(x)− p(x)q′(x)

q2(x)
,

where p, q are polynomials and q(x) 6= 0. It is defined on {x : q(x) 6= 0} and differentiable there.

(3) The radical

(
x1/n

)′
=

1

n
x1/n−1 ,

where x ≥ 0 and n ≥ 2. It is defined and continuous on [0,∞) and differentiable on (0,∞).

(4) The exponential and logarithmic functions

(ex)′ = ex, ∀x ∈ R, (log x)′ =
1

x
, ∀x > 0.

The exponential function is defined and differentiable on (−∞,∞) and the logarithmic function
is defined and differentiable on (0,∞).

(5) The sine and cosine functions

(sinx)′ = cosx, (cosx)′ = − sinx , ∀x ∈ R.

Both functions are differentiable everywhere.

(6) The absolute value function

(|x|)′ = sign (x), x 6= 0 .

It is continuous on (−∞,∞) and differentiable on (−∞, 0)∩ (0,∞). However, it is not differen-
tiable at x = 0. Its right and left derivatives exist but are not equal.

Proof of (1) By linearity and the product rule.
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Proof of (2) By the quotient rule and (1).

Proof of (3) By the inverse rule and chain rule. When α = 1/n, n ≥ 1, x1/n is the inverse func-
tion of xn for x > 0. When α = p/q, p, q > 0, recall that xα = xp/q = (x1/q)p = (xp)1/q. When
p < 0, q > 0, recall that xα = 1/(x1/q)−p . Later we will extend this formula to all non-zero real
number α after the meaning of xα for irrational α is given.

Proof of (4) You may take the first formula for granted. It will be proved after the “ultimate”
definition of the exponential function is introduced in a later chapter. The second formula fol-
lows from the first one by the inverse rule.

Proof of (5) You may take this for granted or follow my formal proof in class. They will be
proved once more after the “ultimate” definition of the sine and cosine functions is introduced
in a later chapter.

Proof of (6) Use definition.

Derivatives of many functions can be computed using the formulas in (1) to (6) together with
linearity, the product, quotient, chain and inverse rules.


